

ASAM REVIEW COURSE 2023

Pharmacology and Toxicology: Principles, Applications, and Limitations

Lewis S. Nelson, MD, MBA, FASAM Professor and Chair of Emergency Medicine Chief, Division of Medical Toxicology and Addiction Medicine Rutgers New Jersey Medical School

Financial Disclosure

Lewis S. Nelson, MD, MBA, FASAM

• No relevant disclosures

Learning Objectives

1

Explain the differences between and clinical relevance of tolerance, dependence, and hyperalgesia. **Describe** the pharmacologic principles of pharmacokinetics and pharmacodynamics and how each impacts addiction risk and addiction treatment.

2

3

Discuss the interpretation pitfalls of screening and confirmatory urine drug tests in the management of patients with substance use.

Addiction Medicine IS Pharmacology

- Drugs have to get to the brain to elicit a response.
 - Blood brain barrier is an effective barricade
- The more rapidly the drugs reach the site of action the greater the reinforcement.
 - Dose and dose rate
 - Route of administration
 - Lipophilicity and other pharmacologic characteristics

Dose-Response

Response = Anything (Blood pressure, Euphoria, Death)

Potency

Rank order the potency at causing death:

Agent	LD50 (mg/kg)
Ethanol	5,000
Morphine	1
Nicotine	1
Botulinum	0.00001

Don't confuse potency with clinical effect

Which has more potent THC?

1980's weed

Trick question:

The THC is the same potency The higher concentration weed is more "potent"

Don't confuse potency of a drug with its concentration

2020 weed

Potency doesn't really matter

Agent	Potency (vs morphine)
Tramadol	0.2
Morphine	1
Oxycodone	1.3
Methadone	4
Heroin	4
Buprenorphine	30
Fentanyl	100
Carfentanil	10,000

Any of these drugs will kill you if you take enough

What is There That is Not Poison?

"What is there that is not poison? All things are poison and nothing [is] without poison. Solely the dose determines that a thing is not a poison"

> Paracelsus (1493-1541) in Third Defense

"Dose Makes The Poison"

Philip Theophrastus Bombast von Hohenheim aka PARACELSUS (1493-1541)

Potency doesn't really matter

Equi-effective "safe" doses

Equi-effective "safe" doses

Deadly doses

Heroin Fentanyl Carfentanil

Dangerous doses

Absorption

REVIEW COURSE 2023

Routes of Administration

- Oral
 - Potentially extensive first-pass
- IV, IN, IM, SC, SL, buccal, inhalational, rectal
 - Bypass hepatic first-pass
- Intrathecal
 - Unique –bypass Blood Brain Barrier

- Transdermal
 - Bypass hepatic first-pass
 - Depot in skin/body fat can influence absorption
- Intranasal
 - May directly access CNS (nose-to-brain)

Hong, S. Pharmaceutics 2019;11:540

Bioavailability

- The amount of unchanged drug reaching systemic circulation after administration is the bioavailability (F).
- F depends upon:
 - Route (IV is 100%)
 - Site specific membrane permeability
 - Drug transporter activity (p-glycoprotein)
 - First-pass metabolism (oral)

		Route		
)		Oral	Sublingual	Buccal
/	Buprenorphine	10%	30%	50%
		Oral	Sublingual	Intranasal
	Naloxone	1%	20%	50%
		Oral		
	Morphine	33%		
	Oxycodone	75%		

Area Under the Curve (AUC)

ASAM

Wolff K, et al. The SAGE Handbook of Drug & Alcohol Studies

OI2h OXYCODONE HCI CONTROLLED-RELEASE) TABLETS

Small, color-coded tablets (actual size)

OxyContin 80 and 160 mg Tablets for used tolerant patients requiring daily oxycodone dosages of 160 mg and 320 mg respective OxyContin* Tablets are to be source the are not to be broken, chewed or existed, broken, chewed or crushed OxyContin Tab lead to the rapid release and absorption toxic dose of oxycodone.

One OxyContin 160 mg Tablet is comparable to two 80 mg tablets when taken on an empty stomach. With a high fat meal, however, there is a 25% greater peak plasma concentration following one 160 mg tablet. Dietary caution should be taken when patients are initially titrated to 160 mg tablets.

0 10mg 200 20mg 🙆 20mg 😚 80mg 🐖 😚 160mg

© 2001, Purdue Pharma L.P., Stamford, CT 06901-3431

OxyContin[®] Tablets are to be swallowed whole, and are not to be broken, chewed or crushed. Taking broken, chewed or crushed OxyContin Tablets could lead to the rapid release and absorption of a potentially toxic dose of oxycodone.

For more information about pain management and prevention, visit our Web site: www.partnersagainstpain.com Please read attached professional prescribing information.

Co-promoted by undue Pharma L.P. and Abbott Laboratories B6571

Section and a section of the section

PUR-4000733

How to Abuse **OP OxyContin**, How to Get High **OP OxyContin** - Bluelight www.bluelight.org/.../526671-How-to-Abuse-**OP-OxyContin**-How-to-Get-High-**OP**-**OxyContin** -

How to Abuse OP OxyContin, How to Get High OP OxyContin So far the only legit way to abuse/get high off of the new OP OxyContin is what I ...

Biotransformation

Ethanol Metabolism

Activation through Biotransformation

- Codeine is demethylated in the liver to morphine
 - Occurs via CYP2D6
 - Codeine is a "pro-drug" (drug undergoes hepatic biotransformation or 'metabolism' to its active component
 - Lisdexamfetamine (Vyvanse[™]) is another example of a pro-drug

Fun pharm fact: heroin does not bind to the mu receptor. Metabolism occurs in the CSF.

Biotransformation

TABLE 11-1 Characteristics of Different Cytochrome P450 Enzymes ^{26,33,123}							
CYP Enzyme	1A2	2B6	2C9	2C19	2D6	2E1	3A4
Percent of liver CYPs	4%-16%	2%-5%	5%-29%	1%4%	1%-4%	6%–17%	15%-37%
Contribution to enterocyte CYPs	None	None	Minor	Minor	Minor	Minor	70%
Organs other than liver with enzyme	Lung	Kidney	Small intestine, nasal mucosa, heart	Small intestine, nasal mucosa, heart	Small intestine, kidney, lung, heart	Lung, small intestine, kidney	Much in small intestine; some in kidney, nasal mucosa, lung, stomach
Percent of metabo- lism of typically used pharmaceuticals	9%	7%	13%	7%	20%	3%	30 %
Polymorphisms ^a	No	Yes	Yes	Yes	Yes	No	No
Allelic Frequency							
Decreased Activity African American Asian Caucasian	_	38%-62% 14%-25% 23%-39%	0%-3% 2%-8% 16%-23%	10%-17% 25%-39% 6%-16%	14%-30% 47%-94% 31%-45%	-	_
Increased Activity African American		0%-25%		15%-27%			
Asian Caucasian Ethiopian	_	5%–15% 6%	-	0%–2% 21%–25%	1% 1%–9% 30%	-	_

* Polymorphism is a genetic change that exists in at least 1% of the human population. Interpersonal allelic variations exist even in those listed as "No" for polymorphism.

Biotransformation

Despite rare polymorphism, 3A4 is a major cause of drug interactions

* Polymorphism is a genetic change that exists in at least 1% of the human population. Interpersonal allelic variations exist even in those listed as "No" for polymorphism.

Distribution

REVIEW COURSE 2023

First Pass Hepatic Metabolism

Bypass first pass

ASAM

SAM ASAM

Cocaine (typical dose) Intravenous: 0.6 mg/kg Intranasal: 2 mg/kg Smoked: 100 mg base

120

180

NIDA Research Monograph 1992, 120

Steady State

- Requires approximately 5 half-lives
 - Regardless of the compound's half-life
- Explains (in part) the risk and difficulty of methadone induction
 - T¹/₂ ~24 hr (12-36 hr)

COLOR OF AD OCTOPIES

Goldfrank's Toxicologic Emergencies, 11th

P-Glycoprotein

Loperamide the OTC fentanyl (reason for no CNS activity) [A...

www.bluelight.org/vb/archive/index.php/t-217933.html -

Aug 21, 2005 - 50 posts - 30 authors

I have found many commonly available items (herbal extracts, supplements or food items) which are **p-glycoprotein inhibitors**, but inhibition at ...

Immodium, BBB, and PGp inhibition [Archive]8 postsJan 12, 2013(Loperamide/cimetidine/quinine) Veteran. Wasn't a ...13 postsOct 2, 2012Forcing Loperamide through the BBB [Archive] - Page 230 postsJun 21, 2011Forcing Loperamide through the BBB [Archive]50 postsMay 23, 2006More results from www.bluelight.org50 postsMay 23, 2006

Loperamide and P-glycoprotein inhibition: assessment of ...

www.ncbi.nlm.nih.gov/...
Vational Center for Biotechnology Information
Volume Vandenbossche - 2010 - Cited by 12 - Related articles
Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance...
coadministration of loperamide with a P-glycoprotein inhibitor or substrate.

Combinations - Loperamide Potentiation + p-glycoprotein in...

www.drugs-forum.com > ... > DRUG-FORUMS > Opiates & Opioids ~ Mar 2, 2012 - 3 posts - 2 authors

SWIM is going to be performing an experiement with Loperamide, he is ... SWIM is aware of the dangerous of inhibiting p-glycoprotein but is not ...

Addiction - metabolite of loperamide is possible PGP	4 posts	Feb 28, 2013
Combinations - Cheap Opiate High-potential	22 posts	Dec 27, 2012
Experiences - Loperamide Report	22 posts	Jan 16, 2012
Blood brain barrier permeation	17 posts	Dec 4, 2010
More results from www.drugs-forum.com		

Pepper Inhibits P-Glycoprotein (just add loperamide??) [Ar...

"Street pharmacologists" understand these principles

Loperamide and p-glycoprotein inhibitors

Lipophilicity

Lipophilicity = Reward = Abuse liability

Drug	LogP
Buprenorphine	4.98
Fentanyl	4.05
Methadone	3.93
Naloxone	2.09
Hydromorphone	1.6
Heroin	1.58
Morphine	0.89

ASAM

HO HHH HO^{WIT}

Morphine

Heroin (diacetyl morphine)

Oxycodone

Oldendorf WH. Science. 1972

Addiction Medicine IS Pharmacology

 CH_3

Cocaine hydrochloride (salt)

Cocaine base (alkaloidal)

Changes in the pharmacologic properties of a substance and how it is used can lead to dramatically different levels of reward and reinforcement

Elimination

REVIEW COURSE 2023

T1/2 (Half-life) is The Time For Cmax to Fall by Half

- Distribution $t\frac{1}{2}$
 - Redistribution t¹/₂
- Terminal elimination $t\frac{1}{2}$
 - Context sensitive t¹/₂
 - Apparent t¹/₂

Drug	Half life (distrib)	Half life (redistrib)	Half life (term)	LogP
Fentanyl	2 min	12 min	480 min	4.05
Methadone	120 min		1440 min	3.93

www.derangedphysiology.com/

Note: all half-lives have ranges, not shown

Receptor Pharmacology

REVIEW COURSE 2023

Efficacy

Ligand	% Efficacy
Full agonist	E = 100
Partial agonist	0 < E < 100
Antagonist	E = 0
Inverse agonist	E < 0

Affinity

f

1

CRIME & DRUGS

There's no good antidote for super heroin laced with elephant tranquilizer

By Rachel Browne October 3, 2016 | 3:10 pm

Ligand	Ki (Affinity) (nmol)
Hydrocodone	41.58
Oxycodone	25.87
Heroin	9.6
Methadone	3.38
Fentanyl	1.35
Morphine	1.14
Naloxone	1.1
Hydromorphone	0.6
Buprenorphine	0.21

Volpe DA. Uniform assessment and ranking of opioid Mu receptor binding constants for selected opioid drugs. Reg Toxicol Pharmacol 2011

Receptor kinetics On-off

Pharmacodynamics

REVIEW COURSE 2023

Tolerance

- Tolerance is the reduction in response to a drug after its repeated administration
- Tolerance shifts the dose-response curve to the right
 - Higher doses than initial doses to achieve the same effect

Differential Tolerance

Hayhurst. Anesthesiology 2016;124:483-8

The Paradox of Differential Tolerance

Tolerance to analgesia is rapid Tolerance to respiratory depression is slow

Pharmacokinetic Tolerance

- A consequence of increased metabolism after a drug is repeatedly administered
- Results in less drug being available at the receptor for drug activity.
- Ethanol
 - Although ADH is not inducible, CYP2E1 is
 - Accounts for more rapid elimination of alcohol in heavy, chronic users

Pharmacodynamic Tolerance

- Down-regulation of receptors (higher drug concentration needed)
 - Desensitization of GABA (ethanol)
 - Receptor conformation
 - Desensitization of MOR (opioid)
 - Signal transduction
 - Decreased density (internalization)
- Up-regulation of receptors
 - Increased number of NMDA

Diazepam Injection, USP

Other Clinical Examples of Tolerance

- Mellanby effect
 - Less "intoxicated" on descending limb of BAC curve

- MDMA, psilocybin, and LSD
 - Serotonergic

 BZD resistant alcohol withdrawal from IV (not really PO) diazepam

Conditioned Tolerance

ASAM

Cross-Tolerance

• Tolerance to the repeated use of a specific drug in a given category is generalized to other drugs with the same structural or mechanistic category.

Goldfrank's Toxicologic Emergencies, 11th

ASAM

Physical Dependence

- A state that develops as a result of adaptation and the resetting of homeostatic mechanisms
- Withdrawal syndrome can occur in physically dependent person when the drug is abruptly stopped or dose reduced
 - Typically improves on restarting the drug
 - Can be a "point of no-return"
- Can occur with both addictive and non-addictive use of drugs
 - Caffeine, nicotine
- And with therapeutic use
 - Clonidine

Goldfrank's Toxicologic Emergencies, 11th

Physical Dependence~ Withdrawal Severity

- Depth of dependence related to extent and duration of exposure
 - Receptor adaptation

Protracted renal clearance of fentanyl in persons with opioid use disorder Andrew S. Huhn^{a,b,*}, J. Gregory Hobelmann^{a,b}, George A. Oyler^c, Eric C. Strain^a ^a Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA ^b Ashley Addiction Treatment, Havre de Grace, MD, 21078, USA ^c Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA

Fentanyl and Norfentanyl Elimination

Huhn AS. et al. Drug Alcohol Depend 2020:108:147

Physical Dependence~ Withdrawal Severity

 Related to rapidity of development of withdrawal

Drug Interactions

REVIEW COURSE 2023

Physiological Drug Interactions

PK/PD Drug Interactions

ASAM

Figure 2. Findings in a Patient with Moderately Severe Serotonin Syndrome.

Hyperkinetic neuromuscular findings of tremor or clonus and hyperreflexia should lead the clinician to consider the diagnosis of the serotonin syndrome.

www.real-psychiatry.blogspot.com Boyer E. NEJM 2005

Exposure Pathway

Men had enough fentanyl to kill entire population of New York City, New Jersey combined, police say

FEBRUARY 3, 2023

BROWN, COLLEAGUES INTRODUCE BIPARTISAN BILL TO PROTECT FIRST RESPONDERS FROM EXPOSURE TO FENTANYL AND OTHER DANGEROUS DRUGS

Bipartisan, Bicameral Legislation Will Help State and Local First Responders Protect Themselves

WASHINGTON, D.C. – U.S. Senator Sherrod Brown (D-OH) introduced the **Protecting First Responders from Secondary Exposure Act**, bipartisan, bicameral legislation that aims to help state and local governments purchase containment devices to safely store dangerous drugs and preserve them for evidentiary use, and provide first responders training to reduce their risk of secondary exposure to lethal substances. The bill would establish the first federal program to

Sheriff's deputy overdoses after exposure to fentanyl during arrest

The video was released to promote public safety.

By ABC NEWS August 6, 2021, 4:51 PM 0 y 🖂 🔗

What to know about the deadly drug fentanyl Fentanyl was first developed in 1959 and introduced in the 1960s as an intravenous anesthetic.

The San Diego County Sheriff's Department <u>released body camera footage</u> of the crucial moments in which a deputy saved another's life after he was overdosed from fentanyl exposure during an arrest last month.

Serum Fentanyl Concentrations Following Multiple Applications of DURAGESIC[®] 100 µg/h (n=10)

Consensus Statement

Appropriate Use of Drug Testing in Clinical Addiction Medicine

Medical Review Officer Guidance Manual for Federal Workplace Drug Testing Programs

Effective Date: January 1, 2020

Rev. 0722

Department of Health and Human Services Subtance Abuse and Mantal Health Services Administration Genter for Subtance Abuse Revention Division of Workplace Rograms

ASAM

Philosophical Considerations (for substance use)

- Testing is not meant to "catch" the patient
 - Testing identifies recent use it does NOT identify addiction or impairment
 - A positive finding suggests need to review treatment plan
 - Not to prevent, limit, or punitively change treatment
- Tests must be interpreted in the context of patient self-report and other information from observed behaviors or reliable sources
- Language is important
 - e.g., clean vs dirty, pass/fail

"You're fired, Jack. The lab results just came back, and you tested positive for Coke."

Screening and Confirmatory Tests

Screening (Presumptive) Assays – indicate the presumptive presence of drugs Highly sensitive Rapid, inexpensive

Cutoff - Yes/No

Confirmatory (Definitive) Assays – specifically identify the drug detected in the screening assay Highly specific Quantitative Complicated, expensive

Screening Tests for Drugs of Abuse

- Enzyme immunoassay
 - Based on a substance's structure.
 - Relatively inexpensive, easily automated
- Analytical false positives are possible ("opiate" assay finds hydrocodone)
 - Confirm positive screens in some clinical situations (TBD shortly)
- Analytical false negatives are less common (assay completely misses an analyte)
 - Clinical false negatives occur (doesn't detect a non-morphine opioid)

02/28/201	23:09 Amphetamines Urine	Ν	[Not Detect-]	Final
Not De	ected * Interpretive Data:			
Drug S	reen results are provided for medical management			
only. N	chain of custody documentation. Testing does not			
meet N	DA standards. Positive results are not confirmed.			

"Drugs of Abuse" Screening

NIDA/SAMHSA 5

- Opiates
- Amphetamines
- Cocaine
- Marijuana
- Phencyclidine

Analyte	Screen, ng/mL	Confirmatory, ng/mL
Opiates	2,000	2,000
Cannabinoid	50	15
Amphetamine	500	250
Cocaine	300	150
Phencyclidine	25	25

NIDA-9 (Extended)

- Opiates
- Amphetamines
- Cocaine
- Marijuana
- Phencyclidine
- Barbiturates
- Benzodiazepines
- Methadone
- Propoxyphene

ASAM

The "Opiate" Assay: Not So Good for "Opioids"

	Online DAT opiates II ¹ assay	EMIT II+ opiate aassay ²	TDx/TDx- flex opiate opiate assay ³	Archetict/ Aeroset	AsSym opiate ³	CEDIA opiate ⁴	DRI opiate ⁴	DRI oxycodone ⁴
Morphine	100	100	100	100	100	100	100	<29
Codeine	134	98	>3.6	167	>3.6	125	167	<20
Ethyl morphine	101		<10		>100			
Diacetyl morphine (hero	in) 82					53	86	<33
6-Acetylmorphine	78	69	>20	67	<30	81	79	<200
Dihydrocodeine	69	103	>3.6	106	>3.6	50	67	<100
Morphine-3-glucuronide	e 54	48	>57	47	>57	81	50	<11
Morphine-6-glucuronide	e		>5.7		<8.6	47	100	
Hvdrocodone	28	121	>8.0	158	>12	48	18	<133
Hydromorphone	21	60	>4.4	54	>6.7	57	7.5	<333
Norcodeine	2							<10
Normorphine							0	<10
Oxycodone	0	12	>1.1	11	<1.7	3.1	1.9	100
Oxymorphone		1.5	<10	0	<15	1.9	0.7	103
Noroxycodone								< 0.1
Noroxymorphone								< 0.1
Meperidine	0	<0.6	<2.0	0	<3.0	0.2	0	
Levallorphan		<4	<6.0	13	<6.0			
Levorphanol		29	>6.0	27	>6.0		2.1	<50
Nalorphine		3	<20	2.3	<30			
Naloxone	0	0.04	<20	0	<30		0	<50
Imiprimine	0					1.6		
Ranitidine						0	0	
Thebaine	25		<20		<30		<15	
Naltrexone	0						0	<20
Fentanyl			<40		<60			

TABLE 7–4	Performance Characteristics of Common Urine Drug	a Screening	a Immunoassavs ^a
		,	,

Drug/Class	Detection Limits (ng/mL) ^b	Confirmation Limits (ng/mL) ^b	Detection Interval ^c	Comments
Amphetamine/ methamphetamine	500	500	1—2 days (2—4 days)	Decongestants, ephedrine, L-methamphetamine, selegiline, and bupropion metabolites are reported to give false-positive test results with some assays; MDA, MDEA, and MDMA are variably detected.
Barbiturates	200		2—4 days	Phenobarbital detection interval is up to 4 weeks.
Benzodiazepines	100–300		1—30 days	Benzodiazepines vary in reactivity and potency. Hydrolysis of glucuronides increases sensitivity. False-positive test results are reported with oxaprozin.
Cannabinoids	50	15	1–3 days (1 month)	Screening assays detect inactive and active cannabinoids; confirmatory assay detects inactive metabolite THCA. Duration of positivity is highly dependent on screening assay detection limits.
Cocaine	150	100	2 days (1 wk)	Screening and confirmatory assays detect inactive metabolite BE. False-positive test results caused by cross-reactive compounds are unlikely.
Opiates Codeine/morphine Hydrocodone/hydromorphone Oxycodone/oxymorphone 6-Acetylmorphine	2,000 300 100 10	2,000 100 50 10	1—2 days (1 week)	Semisynthetic opioids derived from morphine show variable cross-reactivity. Fully synthetic opioids (eg, fentanyl, meperidine, methadone, tramadol) have minimal cross-reactivity. Quinolones are known to cross-react with some assays.
Methadone	300		1—4 days	Doxylamine is reported to cross-react with some assays.
Phencyclidine	25	25	4–7 days (1 month)	Dextromethorphan, diphenhydramine, ketamine, and venlafaxine is reported to cross-react with some assays.

^aPerformance characteristics vary with manufacturer and may change over time. For the most accurate information, consult the package insert of the current lot or contact the manufacturer. ^bSubstance Abuse and Mental Health Services Administration recommendations¹⁰ are shown for amphetamines/methamphetamines, cannabinoids, cocaine, opiates, and phencyclidine immunoassays. Other commercial immunoassay cutoffs are also listed. Other cutoffs may be set by individual laboratories. ^QAlues are after typical use; values in parentheses are after heavy or prolonged use.

BE = benzoylecgonine; MDA = methylenedioxyamphetamine; MDEA = methylenedioxyethylamphetamine; MDMA = methylenedioxymethamphetamine; THCA = tetrahydrocannabinolic acid.

Positive Opioid Screen

- You are evaluating your long-standing patient who tests positive for "opiates" on routine testing. The patient assures you they have not used any drugs.
- (Analytical) true positive
 - Clinical false positive
 - Not an (analytical) false positive
- Note
 - Unclear which opioid
 - Does not correlate with impairment
 - Cannot tell route, time of use, or amount used

Interpretation of a Negative Opioid Screen

- Patient is not using
 - Diversion away
- Clinical false negative
 - Collection/Lab error
 - Wrong assay used
 - e.g.: "Opiate" assay for oxycodone
 - Cutoffs are often used
 - Detection periods are short

TABLE 2. Length of Time Drugs of Abuse Can Be Detected in Urine

Drug	Time
Alcohol	7-12 h
Amphetamine	48 h
Methamphetamine	48 h
Barbiturate	
Short-acting (eg, pentobarbital)	24 h
Long-acting (eg, phenobarbital)	3 wk
Benzodiazepine	
Short-acting (eg, lorazepam)	3 d
Long-acting (eg, diazepam)	30 d
Cocaine metabolites	2-4 d
Marijuana	
Single use	3 d
Moderate use (4 times/wk)	5-7 d
Daily use	10-15 d
Long-term heavy smoker	>30 d
Opioids	
Codeine	48 h
Heroin (morphine)	48 h
Hydromorphone	2-4 d
Methadone	3 d
Morphine	48 - 72 h
Oxycodone	2 - 4 d
Propoxyphene	6 - 48 h
Phencyclidine	8 d

Data from references 7 through 12.

The Gold Standards for Confirmation

- Gas Chromatography/Mass Spectrometry
 - Gold standard for confirmation
 - Chemical "fingerprint" of drugs
 - Sensitive and specific
 - Legally defensible
- Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
 - Emerging Standard for Confirmation
 - Less sample preparation

NPS Opioids in the United States

TRENDQ1REPORT2023

PURPOSE: This report provides up-to-date information regarding the status of NPS opioid prevalence and positivity within the United States & Canada.

OVERVIEW: Navel psychoactive substances (NPS), including NPS opioids, continue to pose great challenges for forensic scientists, clinicians, and public health and safety personnel. NPS opioids have been implicated in an increasing number of emergency room admissions, death investigations, and mass intoxication events, and often appear in combination with other illicit opioids (e.g. fentany), heroin). Maintaining a current scope of analysis can be challenging, requiring comprehensive analytical methodologies and reference materials for identification(s)

OBJECTIVE: Our laboratory utilizes novel approaches for the analysis of drugs in biological samples and seized materials using comprehensive non-targeted data acquisition by gas chromatography mass spectrometry (ICC-MS) and liquid chromatography quadrupole time-of-flight mass spectrometry (ICC-MS) and the metabolites. This approach allows for real-time identification of novel opioids and further data analysis of important trends. This project was conducted in collaborations with the toxicology and criminalistics laboratories of NMS labs. Forensic case types linked to these results include illicit drug investigations, medicologal death investigations, and/or driving under the influence of drugs (DUID) investigations. The results in this report represent the total number of NPS identifications at the CPSPE during this quarter, including those from sample-mining, data-mining, and/or esoteric testing.

SELECT POSITIVITY: Q3 2019 to Q1 2023 Toxicology Methyltetrahydrofuranylfentanyl 📃 1 Drug Material Etodesnitazene 1 lsotonitazene -Brorphine Metonitazene Butonitazene 🔲 1 N-Pyrrolidino Etonitazene ----- Protonitazene 4.0% Brorphine 1 3.5% Valerylfentanyl 2 3.0% Carfentanil 2 N-Pyrrolidino Metonitazene 3 2.5% N-Pyrrolidino Etonitazene 3 2.0% N-Pyrrolidino Protonitazene 6 1.5% N-Desethyl Isotonitazene 6 1.0% Protonitazene 0.5% Isotonitazene 10 0.0% Metonitazene 15 QTR3 QTR4 QTR1 QTR2 QTR3 QTR4 QTR1 QTR2 QTR3 QTR4 QTR1 QTR2 QTR3 QTR4 QTR1 0 10 15 5

For Reference (Toxicology): Fentanyi (n=647) & Elucrotentonyi (n=413)

ACKNOWLEDGENETS: The report was prevented by Alex J. Koluba. PhD: Sana C. FUNDING: CFERC. INFO Searce y is appreciate the National Analysis of the National National

NPS OPIOIDS IDENTIFIED

Buprenorphine analysis

- Can only generalize about expected levels
 - No credible way to say "X" dose should give "Y" level
 - Patients tend to stay within a certain range over time unless dose change
 - Trending helpful and can detect aberrancy
- Adulterated specimen
 - Bup without metabolite (always)
 - Bup >1000 ng/mL, even with metabolite (suggestive)
- Higher Bup levels than Norbup levels due to:
 - Dosing shortly before urine test
 - CYP 3A4 inhibitor or substrate which slows conversion to metabolite

Matrix Considerations

- Window of detection
- Time to obtain results (availability of POCT)
- Ease of collection (need for trained personnel, collection facilities)
- Invasiveness/unpleasantness of collection
- Availability of the sample (e.g., renal health, shy bladder, baldness, dry mouth)
- Susceptibility of the sample to tampering

Drugs are found in much lower concentrations Easy to observe

Drugs and metabolites are concentrated in urine

Drugs and metabolites incorporated into hair Concentrations of drugs low with sporadic use

Prospective collection, 1-2 weeks Inter and intraindividual variability

Can compare to creatinine

Invasive and expensive to test More direct relationship to impairment

Easy to collect and observe Essentially limited to ethanol

	Blood	Breath	Oral Fluid	Urine	Sweat	Hair
General detection period	<24 hours [2] 1–8 hours [25] 1–48 hours [26]	~ 1 hr per standard drink	<24 hours [2] 12–24 hours [27] 1–36 hours [28] 5–48 hours [29] 12–48 hours [25]	1.5-4 days [29] 1-3 days [25,26,30]	Continuous, usually 1-4 weeks [2,26]	7–90 days [2] 7–100 days [26]
POCT/On-site immunoassay available	Yes, primarily used for alcohol	For alcohol	Yes	Yes	No	No
Primarily detects	Parent drug compound; blood alcohol concentration	Parent drug compound; blood alcohol concentration	Parent drug compound	Drug metabolite	Parent drug compound	Parent drug compound
Best use in treatment setting	Determination of acute impairment or intoxication for alcohol	Determination of acute impairment or intoxication for alcohol	Short-term detection in ongoing treatment	Intermediate-term detection in ongoing treatment	Medium-term prospective monitoring	Long-term monitoring; 3-month drug use history
Ease of collection	Requires staff trained in phlebotomy	Easily collected	Easily collected	Requires specialized collection facility (restroom)	Easily collected	Easily collected
Intrusiveness of collection	High for intravenous access	Low	Low	High	Low	Low
Resistance to tampering	High	High	High, but some uncertainty	Low	High, but some uncertainty	High when chemically untreated
Retesting same sample	Difficult	Generally not possible	Difficult	Possible	Possible depending on patch used	Easy

. -. . .

ASAM

ASAM Appropriate Use of Drug Testing in Clinical Addiction Medicine, 2017

Specimen validity testing

- Medical or forensic toxicologist
- Staff at the testing laboratory
- A physician with MRO certification
References

- Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LS, Hoffman RS. Goldfrank's Toxicologic Emergencies, 11th Edition. New York, McGraw Hill, 2019.
- Hayhurst CJ, Durieux ME. Differential Opioid Tolerance and Opioid-induced Hyperalgesia: A Clinical Reality. Anesthesiology. 2016;124(2):483-488.
- Oldendorf WH. Some Relationships Between Addiction and Drug Delivery to the Brain. NIDA Research Monograph 120: Bioavailability of drugs to the brain and the blood brain barrier. 1992.
- ASAM Appropriate Use of Drug Testing in Clinical Addiction Medicine, 2017

What property of fentanyl accounts for its enhanced psychoactive effects compared to morphine?

- A. Charge
- B. Lipophilicity
- C. Molecular weight
- D. Potency

A patient started on opioids requires increasing doses of medication to get adequate pain relief. At the same time, painful stimuli elicit more pain that they previously did. What does this represent?

- A. Hyperalgesia
- B. Pharmacodynamic tolerance
- C. Pharmacokinetic tolerance
- D. Withdrawal

Which of the following drug screening tests is associated with the lowest rate of false positive results?

A. AmphetamineB. CocaineC. OpioidsD. Phencyclidine

Get in Touch

Lewis.Nelson@Rutgers.edu

@LNelsonMD